

The Development of Land unit's Quality Score for Mass Valuation in Thailand

Presented by:

Mr. Akekalak Chalermcheep, *Director, Property Valuation Standard Division, Treasury Department* Mr. Pariya Teppitaksak, *Practitioner Valuer, Treasury Department*

Presented at: 27th ASEAN Valuers Association Congress November 2025

กรมธนารักษ์ The Treasury Department

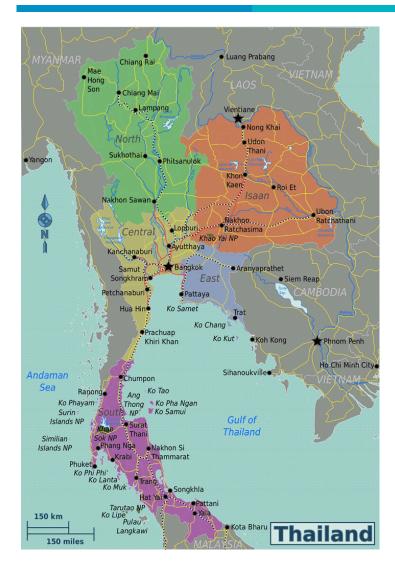
Speaker Introduction

Mr. Akekalak Chalermcheep

Director of Property Valuation Standard Division The Treasury Department, Ministry of Finance, Thailand

> Head of Working Group "Project for Enhancement of Property Valuation Capacity in Thailand"

Mr. Pariya Teppitaksak


Valuer, R&D, Property Valuation Standard Division The Treasury Department, Ministry of Finance, Thailand

> Secretary Assistant "Project for Enhancement of Property Valuation Capacity in Thailand"

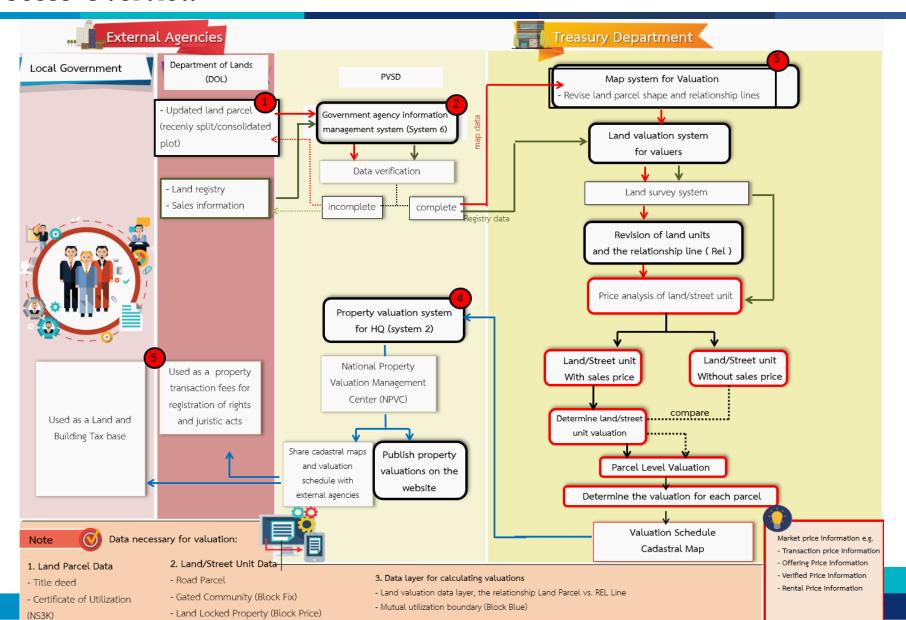
Overview of Property Valuation in Thailand

Mandated by Law: Property Valuation for the Public Interest Act 2019

Assessment Cycle: 4-year cycle, with periodic reviews for accuracy and fairness

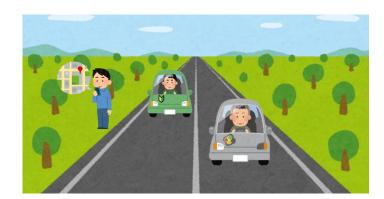
Property Type: Land, Buildings and structures, Condominium units

Total Land Parcel: 37 millions



Assessment Body: The Treasury Department

Valuation Process Overview


กรบธบารักษ์ The Treasury Department

Key Challenges

Comparison Criteria?

One of the key challenges in Thailand's land valuation method is the assessment of land units without recorded sale prices. In such cases, the valuation must be based on comparisons with land units that do have sale prices. However, this process lacks a standardized methodology and largely relies on the judgment and experience of valuation officers.

Collaboration Project with JICA

"Project for Enhancement of Property Valuation Capacity in Thailand"

Technical Cooperation Project (TCP) between the Treasury Department and the Japan International Cooperation Agency (JICA)

Objectives

- •To develop a property valuation framework and methodology in Thailand that reflects actual conditions and the real estate market in the assessed areas.
- •To enhance the capacity of property valuation officers nationwide, enabling them to perform their duties more efficiently and effectively.

Project Duration: 3 years (November 2022 – November 2025)

Step 1: Stepwise Regression

We begin by collecting land unit data from our database, including attributes such as street name, land use, street width, and street value. Additionally, we enhance this dataset using GIS software to extract further attributes, such as the distance between each land unit and key public amenities, including public transportation, schools, hospitals, and department stores. In total, we consider 19 attributes.

Once the data is compiled, we apply stepwise regression analysis to identify the attributes that significantly influence land sale prices. This analytical approach ensures that only the most relevant factors are incorporated into the valuation model, enhancing its accuracy and reliability.

STREET_CODE	STREET_DEPTH LAND_USE	STREET_TYPE	STREET_WIDTH	STREET_AREA	STREET_VALUE	STREET_RN	Road_Type	Road_Category
S139	40 Agriculture	Asphalt Road	4	4	800	360104513	6	0
S045	40 Residential	Asphalt Road	4	4	500	360099304	6	0
S045	40 Agriculture	Dirt Road	5	8	500	360107141	. 6	0
S071	40 Residential	Concrete Road	4	6	600	60183713	6	0
S045	40 Agriculture	Dirt Road	4	8	500	360100553	6	0
S044	40 Agriculture	Dirt Road	5	5	300	60187289	6	0
S001	40 Agriculture	Dirt Road	4	8	200	360101023	6	0
S001	40 Agriculture	ห็นคลุก	4	6	200	360107142	6	0
S044	40 Agriculture	Dirt Road	4	5	300	60025587	6	0
S001	40 Agriculture	ห็นคลุก	4	6	200	60036668	6	0
S001	40 Agriculture	ห็นคลุก	4	6	200	60033293	6	0
S044	40 Agriculture	Dirt Road	4	5	300	60024071	. 6	0
S044	40 Agriculture	Dirt Road	4	5	300	60184236	6	0
S002	40 Agriculture	Asphalt Road	4	6	250	60190600	6	0
S011	40 Residential	Concrete Road	5	8	300	60011266	6	0
S044	40 Agriculture	Dirt Road	5	6	300	60184680	6	0
S001	40 Agriculture	ห็นคลุก	4	6	200	360107143	6	0
S001	40 Agriculture	Asphalt Road	4	6	200	60183213	6	0
S001	40 Agriculture	ห็นคลุก	4	6	200	60184637	6	0
S049	40 Agriculture	Dirt Road	4	8	200	60184106	6	0
S044	40 Agriculture	Asphalt Road	5	5	300	10028648	6	0
S202	40 Residential	Concrete Road	5	6	600	60032776	0	0
S045	40 Agriculture	Dirt Road	4	8	500	60081409	6	0
S002	40 Residential	Asphalt Road	4	4	250	10027648	6	(
S002	40 Agriculture	หืนคลุก	4	6	250	60103529	6	0
S044	40 Residential	Concrete Road	4	5	300	60186615	6	0
S044	40 Agriculture	Dirt Road	4	5	300	60011239	6	0
S045	40 Agriculture	Dirt Road	4	8	500	60186745	6	0
S044	40 Agriculture	Dirt Road	5	5	300	60009748	6	0
S044	40 Agriculture	Dirt Road	4	5	300	60022773	6	C
S049	40 Agriculture	Dirt Road	5	8	200	60186935	6	C
S045	40 Agriculture	Dirt Road	4	8	500	60186664	6	0
S208	40 Agriculture	ห็นคลุก	4	4	250	60136977		
S044	40 Agriculture	Dirt Road	4	5	300	60016376	6	0
S044	40 Agriculture	Dirt Road	4	5	300	60186643	6	

Chatuchak

STREET VAL R-squared

OLS Adi. R-squared

0.756

Removing Bus with p-value 0.9995147841342812 Removing Religious with p-value 0.4389472863325772 Removing STREET_TYP with p-value 0.28792358806080908 Removing BTS_MRT with p-value 0.29294925079702854 OLS Regression Results

Method:			ares F-st			420.0
Date:		Fri, 08 Nov	2024 Prob	(F-statisti		0.00
Time:		14:4	8:14 Log-	Likelihood:		-13755.
No. Observat	tions:		1233 AIC:			2.753e+04
Df Residual:	s:		1223 BIC:			2.758e+04
Df Model:			9			
Covariance '	Type:	nonro	bust			
	coef	std err	t	P> t	[0.025	0.975]
	-1.607e+04			0.000		
		1043.396				
		157.941				
		108.609				
BTS_STATIO	2822.5918	350.552	8.052	0.000	2134.842	3510.34
		1.818				
		0.817				
		1.073				
Park	-5.3021	0.846	-6.265	0.000	-6.963	-3.642
Prison	3.4884	0.500	6.984	0.000	2.508	4.468
Omnibus:			.097 Durb:			1.79
Prob(Omnibu:	s):			ue-Bera (JB)	:	
Skew:			.226 Prob			0.00
Kurtosis:		33	.178 Cond	. No.		3.56e+04

Notes:

 Standard Errors assume that the covariance matrix of the errors is correct specified.

[2] The condition number is large, 3.56e+84. This might indicate that there are strong multicollinearity or other numerical problems.

Step 2: Scoring

Once we identify the attributes that significantly impact sale prices, we assign a score ranging from 1 to 5 to each attribute to further analyze their relative weight. For example, in the case of street width, a street wider than 8 meters receives the highest score of 5. If the width falls between 6 and 8 meters, it is assigned a score of 4, and the scoring continues in a similar manner down to a minimum score of 1. This structured scoring system ensures a more objective and systematic evaluation of land unit characteristics.

STREET_WID	Assign values based on conditions:
	- 5 if > 8
	- 4 if 6 ≤ value ≤ 8
	- 3 if 4 ≤ value < 6
	- 2 if 2 ≤ value < 4
	- 1 if < 2
RoadCate	Assign values based on conditions:
	- 5 if value = 1
	- 1 otherwise
Arterial	Assign values based on conditions:
	- 5 if < 500
	- 4 if 500 ≤ value ≤ 1000
	- 3 if 1000 < value ≤ 2000
	- 2 if 2000 < value ≤ 3000
	- 1 if > 3000

Step 3: Weight Percentage

After assigning scores, we conduct another regression analysis to determine the weight of each attribute. These weights are then converted into percentage values for better interpretability and application in the valuation model.

Percentage	contribution	of	each	coefficient:
LAND_USE	23.274995			
STREET_WID	16.724431			
RoadCate	21.676979			
Arterial	8.391226			
Store	6.872136			
Park	5.464540			
Count_500	1.148164			
BTS_STATIO	7.049312			
Cemetery	1.671535			
Prison	7.726681			

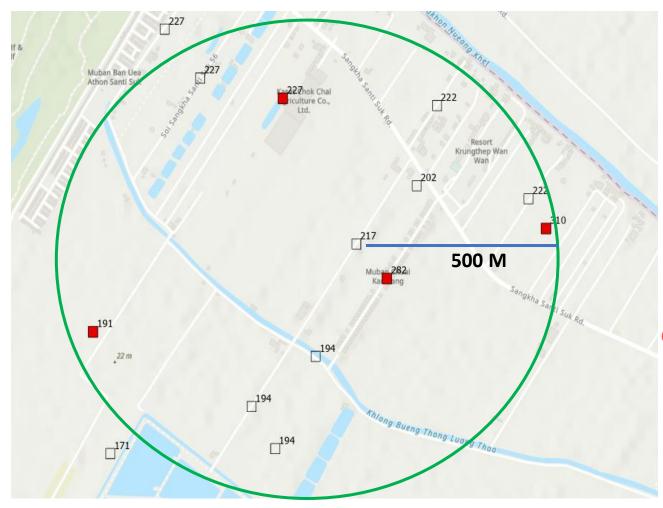
OLS Regr	ession Res	ults		
STREET_VA	L R-squa	red:		0.677
OL	S Adj. R	-squared:		0.679
Least Square	s F-stat	istic:		256.4
Tue, 26 Nov 202	4 Prob (F-statistic	:):	1.45e-291
12:10:0	1 Log-Li	kelihood:		-13915.
123	2 AIC:			2.785e+04
122	1 BIC:			2.791e+04
1	0			
nonrobus	t			
f std err	t	P> t	[0.025	0.975]
6603.466	-20.720	0.000	-1.5e+05	-1.24e+05
1268.793	13.354	0.000	1.45e+04	1.94e+04
702.259	17.336	0.000	1.08e+04	1.36e+04
929.074	16.985	0.000	1.4e+04	1.76e+04
1028.656	5.938	0.000	4090.306	8126.565
604.710	8.273	0.000	3816.220	6188.992
3 574.000	6.930	0.000	2851.805	5104.075
1 508.756	1.643	0.101	-162.320	1833.945
683.550	7.507	0.000	3790.520	6472.644
478.783	2.541	0.011	277.474	2156.130
862.619	6.520	0.000	3932.296	7317.057
781.64	5 Durbin	-Watson:		1.845
0.00	0 Jarque	-Bera (JB):		48274.855
	STREET_VA OL Least Square Tue, 26 Nov 202 12:10:0 123 122 1 nonrobus f std err 6 6603.466 1 1268.793 1 702.259 1 929.074 6 1028.656 2 604.710 3 574.000 1 508.756 9 683.550 1 478.783 8 862.619	STREET_VAL R-squa OLS Adj. R Least Squares F-stat Tue, 26 Nov 2024 Prob (12:10:01 Log-Li 1232 AIC: 1221 BIC: 10 nonrobust F std err t 6 6603.466 -20.720 1268.793 13.354 1702.259 17.336 1702.259 17.336 1929.074 16.985 1028.656 5.938 1028.656 5.938 1028.656 5.938 1038.756 1.643 1038.756 1.643 1048.756 1.643 1058.756 1.643	STREET_VAL R-squared:	STREET_VAL R-squared:

33.351 Cond. No.

Kurtosis:

Step 4: Quality Score Calculation

Once we obtain the percentage weight of each attribute, we calculate the individual attribute scores by multiplying the assigned score by its respective weight percentage. These weighted scores are then aggregated to derive the **quality score** for each land unit. The quality score serves as a comprehensive indicator of the overall quality and valuation potential of the land unit.


0 120 80 17 15 15 20 30 10000 0 1000983136 1 120 80 17 12 15 20 10 8000 0 1000982333 2 80 60 17 12 20 20 10 3700 0 1000982151 3 80 60 17 12 10 10 10 3200 0 1000982127		LAND_USE	STREET_WID	RoadCate	Arterial	Store	Park	Count_500	STREET_VAL	Main_LU	STREET_RN	Quality_Score
2 80 60 17 12 20 20 10 3700 0 1000982151	0	120	80	17								297
	1	120	80	17	12	15	20	10	8000	0	1000982333	274
3 80 60 17 12 10 10 10 3200 0 1000982127	2	80	60	17	12	20	20	10	3700	0	1000982151	219
• • • • • • • • • • • • • • • • • • •	3	80	60	17	12	10	10	10	3200	0	1000982127	199
4 80 60 17 9 10 15 10 3000 0 1000983105	4	80	60	17	9	10	15	10	3000	0	1000983105	201

Step 5 : Land Unit Comparison

The Working Group has developed a Python algorithm designed to systematically identify the three closest land units with recorded sale prices within a 500-meter radius. If fewer than three entries are found within this range, the search radius is incrementally expanded to 1 km, 1.5 km, 2 km, and up to a maximum of 20 km until at least three comparable land units are located or the maximum radius is reached.

Once land units with sale price records are identified, the algorithm prioritizes and records the closest match based on **Quality Score**. Additionally, two key criteria must be met when selecting comparable land units:

1.The **Quality Sco**re difference must not exceed **30%**.

The Street Type of the selected land unit must be the same as the target unit.

The identified matches are then systematically stored in a table, displaying the **Quality Score** and other relevant details.

(Refer to the next slide for a detailed table structure and results.)

مرم موسى المالاه الوم لامر

Main and Sub Land Unit Comparison Result Table

QS of sub LU

QS of Compare Main LU

Street_Rn of Compare Main LU Street_Value of Compare Main LU Radius that Main_LU were founded

												_
Quality_Sc	geometry	centroid	QS_C_1	ST_RN_C_1	ST_VAL_C_1	QS_C_2	ST_RN_C_2	ST_VAL_C_2	QS_C_3	ST_RN_C_3	ST_VAL_C_3	scan_km
219	POLYGON ((699198.120 1523159.040, 699192.540 1	POINT (699213.419 1523072.183)	209	1000983218	1700	237	1000983127	5500	237	1000983127	5500	[2.0, 2.0, 4.0]
201	POLYGON ((696818.724 1526194.609, 696814.992 1	POINT (696692.876 1526286.254)	234	1000982481	8500	262	1000982389	7000	186	1000982582	3500	[2.0, 2.0, 4.0]
215	POLYGON ((705420.279 1524639.120, 705420.556 1	POINT (705452.345 1524704.208)	207	1000983055	3700	199	1000982158	3000	231	1000983193	2800	[4.0, 4.0, 4.0]
350	POLYGON ((698535.250 1522494.496, 698525.617 1	POINT (698404.431 1523535.285)	237	1000983127	5500	209	1000983218	1700	234	1000982481	8500	[2.0, 2.0, 4.0]
219	POLYGON ((708911.759 1526656.228, 708927.697 1	POINT (708664.793 1526838.728)	227	1000982852	5000	231	1000983193	2800	237	1000983204	6000	[4.0, 4.0, 4.0]

Method 1: Adjusting Based on Closest Quality Score Difference

How It Works:

- 1. Identify the closest Main LU based on the smallest difference in Quality Score (QS_C_1).
- 2. Calculate the percentage difference between sub_lu['Quality_Sc'] and QS_C_1:

$$Percentage\ Difference = \frac{sub_lu['Quality_Sc'] - QS_C_1}{QS_C_1}$$

3. Adjust the value of ST_VAL_C_1 based on this percentage difference:

 $method_1_val = ST_VAL_C_1 \times (1 + Percentage Difference)$

Quality_Sc	geometry	centroid	QS_C_1	ST_RN_C_1	ST_VAL_C_1	QS_C_2	ST_RN_C_2	ST_VAL_C_2	QS_C_3	ST_RN_C_3	ST_VAL_C_3	scan_km	method_1_val	method_2_val
219	POLYGON ((699198.120 1523159.040, 699192.540 1	POINT (699213.419 1523072.183)	209	1000983218	1700	237	1000983127	5500	237	1000983127	5500	[2.0, 2.0, 4.0]	1,781	3,700
201	POLYGON ((696818.724 1526194.609, 696814.992 1	POINT (696692.876 1526286.254)	234	1000982481	8500	262	1000982389	7000	186	1000982582	3500	[2.0, 2.0, 4.0]	7,301	5,343
215	POLYGON ((705420.279 1524639.120, 705420.556 1	POINT (705452.345 1524704.208)	207	1000983055	3700	199	1000982158	3000	231	1000983193	2800	[4.0, 4.0, 4.0]	3,843	3,300
350	POLYGON ((698535.250 1522494.496, 698525.617 1	POINT (698404.431 1523535.285)	237	1000983127	5500	209	1000983218	1700	234	1000982481	8500	[2.0, 2.0, 4.0]	8,122	5,456
219	POLYGON ((708911.759 1526656.228, 708927.697 1	POINT (708664.793 1526838.728)	227	1000982852	5000	231	1000983193	2800	237	1000983204	6000	[4.0, 4.0, 4.0]	4,824	4,516

Example:

sub_lu['Quality_Sc']	QS_C_1	ST_VAL_C_1	Percentage Difference	method_1_val
219	209	1700	$\frac{\frac{219-209}{209}}{209} = 0.0478 = 4.78\%$	$1700 \times (1 + 0.0478) = 1781.26$

Explanation of Calculation:

- 1. The percentage difference is 4.78%, meaning <code>sub_lu['Quality_Sc']</code> is 4.78% higher than <code>QS_C_1</code> .
- 2. The value of $ST_VAL_C_1$ is increased by 4.78% to compute $method_1_val$.

Method 2: Weighted Average Based on All Matches

Quality_Sc	geometry	centroid	QS_C_1	ST_RN_C_1	ST_VAL_C_1	QS_C_2	ST_RN_C_2	ST_VAL_C_2	QS_C_3	ST_RN_C_3	ST_VAL_C_3	scan_km	method_1_val	method_2_va
219	POLYGON ((699198.120 1523159.040, 699192.540	POINT (699213.419 1523072.183)		1000983218	1700	237	1000983127	5500	237	1000983127	5500	[2.0, 2.0, 4.0]	1,781	3,700

How It Works:

- 1. Consider all three closest matches: QS_C_1 , QS_C_2 , and QS_C_3 .
- 2. For each match, calculate the similarity weight:

Weight =
$$\frac{1}{|\text{sub_lu}['\text{Quality_Sc'}] - \text{QS_C}| + 1e - 6}$$

Adding a small constant (1e-6) ensures numerical stability and avoids division by zero.

3. Normalize the weights so they sum to 1:

Normalized Weight =
$$\frac{\text{Weight}}{\sum \text{Weights}}$$

4. Calculate the weighted value:

$$method_2_val = \sum (Normalized \ Weight \times ST_VAL_C)$$

Calculation for Method 2:

- 1. Weight Calculation:
 - For each match, calculate the weight as the inverse of the absolute difference in Quali Score plus a small constant to avoid division by zero (1e-6).

$$\begin{split} \text{Weight}_1 &= \frac{1}{|219 - 209| + 1e - 6} = \frac{1}{10 + 1e - 6} \approx 0.1 \\ \text{Weight}_2 &= \frac{1}{|219 - 237| + 1e - 6} = \frac{1}{18 + 1e - 6} \approx 0.0556 \\ \text{Weight}_3 &= \frac{1}{|219 - 237| + 1e - 6} = \frac{1}{18 + 1e - 6} \approx 0.0556 \end{split}$$

2. Normalize Weights:

$$\begin{split} \text{Total Weight} &= 0.1 + 0.0556 + 0.0556 = 0.2112 \\ \text{Normalized Weight}_1 &= \frac{0.1}{0.2112} \approx 0.473 \\ \text{Normalized Weight}_2 &= \frac{0.0556}{0.2112} \approx 0.263 \\ \text{Normalized Weight}_3 &= \frac{0.0556}{0.2112} \approx 0.263 \end{split}$$

- 3. Weighted Average:
 - Multiply the weights by their respective ST_VAL_C values and sum them:

$$\begin{split} \text{method_2_val} &= (0.473 \times 1700) + (0.263 \times 5500) + (0.263 \times 5500) \\ \text{method_2_val} &= 803.1 + 1446.5 + 1446.5 = 3696.1 \end{split}$$

Rounded to match the example format: 3700.

Step 6: Compare with with Standard Criteria

Finally, after obtaining results from both methods, we will compare the outcomes against international standards, such as those set by the International Association of Assessing Officers (IAAO). To evaluate the accuracy and fairness of the model, we will calculate key statistical measures, including the Coefficient of Dispersion (COD) and the Price-Related Differential (PRD). These values should fall within the recommended ranges of 5 to 25 for COD and 0.98 to 1.03 for PRD. At present, we are actively addressing data inconsistencies and refining the valuation model as necessary to enhance accuracy and ensure more reliable results.

			Meth	od 1			Method 2						
Pilot Area	COD			PRD			COD			PRD			
	Before	After	% Change	Before	After	% Change	Before	After	% Change	Before	After	% Change	
Nakhon Sawan	102.13	26.65	75.48	3.14	1.04	2.10	102.13	25.94	76.19	3.14	1.00	2.15	
Rayong	37.91	24.26	13.65	0.86	1.03	-0.17	37.91	24.11	13.80	0.86	1.01	-0.15	
Chachoengsao	36.55	24.22	12.33	1.09	1.00	0.09	36.55	22.19	14.36	1.09	1.03	0.06	
Nong Chok	31.04	23.65	7.39	0.92	1.02	-0.10	31.04	19.06	11.98	0.92	1.02	-0.10	
Chatuchak	27.12	22.38	4.74	0.98	1.01	-0.03	27.12	18.02	9.10	0.98	1.01	-0.03	

